ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

DIVERSIDADE DE GALHAS EM DUAS ESPÉCIES DE *COPAIFERA* (FABACEAE): UM TESTE DA HIPÓTESE DA ARQUITETURA DA PLANTA

Karen Luiza Rodrigues Duarte, Ingrid Lara Vieira Gomes, Letícia Fernanda Ramos Leite, Henrique Tadeu dos Santos, Ritiely Durães Coutinho, Marcilio Fagundes

Introdução

Galhas são transformações atípicas dos tecidos vegetais resultantes da hipertrofia e/ou hiperplasia das células das plantas. Estas transformações são provocadas por diversos organismos (e.g. vírus, bactérias, fungos e insetos) [1]. Entre os insetos, acredita-se que a capacidade para induzir a formação das galhas surgiu como estratégia de defesa contra adversidades climáticas ou o ataque de inimigos naturais. Contudo, a preferência e a performance do inseto galhador podem ser afetadas por várias características da planta hospedeira e pela ação de parasitas e patógenos [2,3] .

Várias hipóteses têm sido propostas para explicar o padrão de distribuição e abundância dos insetos galhadores em suas plantas hospedeiras [4]. Especificamente, a hipótese da arquitetura da planta prediz que espécies de plantas estruturalmente mais complexas sustentam maior diversidade de herbívoros [5,6]. A relação entre diversidade e arquitetura ocorre porque plantas maiores podem ser encontradas mais facilmente pelos herbívoros, possuem mais sítios para oviposição e propiciam maior refúgio contra inimigos naturais [5]. Assim, espera-se que árvores apresentem maior diversidade de galhas do que arbustos e ervas.

Copaifera langsdorffii é uma espécie arbórea com ampla distribuição geográfica que atinge até 20m de altura. Copaifera oblongifolia é um arbusto com aproximadamente 2 m de altura que ocorre em áreas degradadas como margem de rodovias e especialmente em pastagens abandonadas, onde torna-se dominante e afeta negativamente o uso do solo para pastoreio. Estas duas espécies podem ser encontradas em simpatria em áreas de cerrado degradado no norte do estado de Minas Gerais. Assim neste estudo a predição da hipótese da arquitetura da planta foi testada, esperando que C. langsdorffii apresente maior abundância e riqueza de galhas do que C. oblongifolia.

Materiais e Métodos

Os trabalhos de campo foram conduzidos durante os meses de junho e julho de 2015 em uma área de cerrado no município de Jequitaí, norte do Estado Minas Gerais (17º 14'S 44 º 27'W). Nesta área foram selecionados 15 indivíduos de *Copaifera langsdorffii* presentes na mata ciliar (ambiente mésico) e 20 indivíduos de *Copaifera oblongifolia* coletados no cerrado aberto (ambiente xérico) para levantamento e comparação da diversidade de galhas entre as duas espécies. Em cada planta selecionada para o estudo foram coletados 10 ramos terminais para a quantificação das galhas. Estes ramos foram acondicionados individualmente em sacos plásticos e levados para o Laboratório de Biologia da Conservação para triagem e identificação dos morfotipos de galhas.

A suficiência amostral foi testada com a construção de curvas de rarefação para as duas espécies das plantas hospedeiras usando o Software Estimate. Variação na composição da comunidade galhas entre as duas espécies de plantas foi testada pela análise de escalonamento multidimensional não métrica com auxílio do software Past [7]. Variações na riqueza e abundância de galhas entre as duas espécies de *Copaifera* foram testados a partir da construção de Modelos Lineares Generalizados seguidos por análises de variância (Anova), onde as variáveis explicativas eram as espécies de planta e a riqueza ou a abundancia de galhas foram as variáveis respostas.

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Apoio financeiro: CNPQ, CAPES, FAPEMIG.

Resultados e Discussão

Foram amostradas em *C. langsdorffii* um total de 423 galhas pertencentes a 15 morfotipos. Os indivíduos de *C. oblongifolia* amostrados apresentaram 814 galhas e 18 morfotipos. Os resultados da curva de rarefação indicaram que o número de espécies de galhas se estabilizou próximo a 12ª planta amostrada nas duas espécies. Estes resultados sugerem que o esforço amostral foi suficiente para as duas espécies de planta e foram similares ao encontrado por Costa et al. [8].

A composição da comunidade de galhas variou entre as duas espécies de *Copaifera* (P =0,01). De fato, foram amostradas um total de 1237 galhas nas duas espécies de plantas (423 em *C. langsdorffii* e 814 em *C. oblogifolia*). Além disto, observou-se que quatro galhas ocorreram apenas *C. langsdorffii* e sete foram exclusivas de *C. oblogifolia*. Finalmente, notou-se que 11 galhas ocorreram nas duas espécies de *Copaifera*.

A riqueza de galhas variou entre as espécies de *Copaifera* (Chisq = 7,213, P = 0,007). De fato, a fauna de galhadores foi cerca de 21% maior em *C. oblongifolia*. Assim, nossos resultados não deram suporte a Hipótese da Arquitetura da Planta (5). Finalmente, observou-se que a abundância de galhas não variou entre as duas espécies de *Copaifera* (F = 3,291, P = 0,069).

Diversos estudos apontam que a riqueza de galhas é maior em ambientes com restrição hídrica e nutricional (ambientes xéricos) quando comparados aos habitats mésicos (ambiente úmido). Essa hipótese pode ser uma explicação para a maior riqueza de galhas em *C. oblongfolia* porque as plantas de *C. langsdorffii* estavam em ambiente mésico.

Conclusão

A Hipótese da Arquitetura da Planta foi refutada neste estudo.

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Apoio financeiro: CNPq, CAPES, FAPEMIG

Referências

- [1] FERNANDES, G.W. & P.W. PRICE. (1988). Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76: 161–167.
- [2] FERNANDES, G.W., & P.W. PRICE. (1991). Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. *In P.W. Price, T.M. Lewinsohn, G.W. Fernandes and Benson, W.W. (Eds.). Plant-animal interactions: evolutionary ecology in tropical and temperate regions.* p: 91 115. John Wiley and Sons, New York, USA.
- [3] PRICE, PW. (1991). The plant vigor hypothesis and herbivore attack. Oikos, 62:244-251.
- [4] FLECK, T. & C.R. FONSECA. (2007). Hipóteses sobre a riqueza de insetos galhadores: uma revisão considerando os níveis intra-específico, interespecífico e de comunidade. *Netropical Biologdy and Conservation* 2: 36-45.
- [5] LAWTON, JH. (1983). Plant architecture and the diversity of phytophagous insect. Annual Review of Entomology 28:23-39.
- [6] ESPÍRITO-SANTO, MM; FS NEVES; FR ANDRADE-NETO & GW FERNANDES. (2007). Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. *Oecologia*, 153:353-364.
- [7] HAMMER, Ø., HARPER, D.A.T. and RYAN, P.D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4: 1–9.
- [8] COSTA FV, NEVES FS; SILVA JO; FAGUNDES; M. (2011). Relationship between plant development, tannin concentration and insects associated with Copaifera langdorffii (Fabaceae). Arthopod Plant Interact , 5:9-18.

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Apoio financeiro: CNPq, CAPES, FAPEMIG.