23 A 26 SETEMBRO DE 2015 Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

AVALIAÇÃO DO EFEITO DA METFORMINA NO COMPORTAMENTO FENOTÍPICO DE CÉLULAS DE CARCINOMA EPIDERMÓIDE DE BOCA

Pablo Vinicyus Ferreira Chagas, Eliane Macedo Sobrinho Santos, Lucyana Conceição Farias

Introdução

O carcinoma epidermóide é a neoplasia maligna mais comum da região de cabeça e pescoço, tendo origem nos queratinócitos do epitélio pavimentoso da cavidade bucal; representa aproximadamente 90% dos cânceres de boca. A estimativa mundial apontou aproximadamente 300 mil casos novos e 145 mil óbitos, no ano de 2012, por câncer de boca e lábio [1]. O carcinoma epidermóide de boca (CEB) é considerado um problema de saúde pública em todo o mundo devido a sua alta mortalidade e frequente mutilação [1]. Atualmente, a taxa de sobrevida em 1 (um) ano é de aproximadamente 81% e, em 5 (cinco) anos, é em torno de 50% [2]; essa frequência reduz consideravelmente em indivíduos que apresentam metástase [3].

Devido à alta morbidade causada pelo CEB, estudos têm buscado novos fármacos antineoplásicos, que possuam uma maior eficiência em induzir à morte células tumorais, e com redução dos efeitos adversos.

Neste estudo utilizou-se o medicamento Metformina (MET) para investigar a sua ação sobre o CEB; A MET pertence ao grupo farmacológico das biguanidas, denominado sensibilizadores de insulina, ou seja, não estimulam a liberação de insulina pelo pâncreas, agindo em tecidos periféricos melhorando a resistência insulínica é considerada um agente antihiperglicêmico e não hipoglicêmico, mesmo quando utilizado em altas doses [4].

Estudos recentes têm demonstrado uma importante associação entre o uso da MET e a prevenção contra diversos tipos de cânceres, cujo mecanismo molecular ainda não está totalmente elucidado [5]

Este estudo teve por objetivo avaliar o efeito da MET em células de carcinoma epidermóide de boca sob condições de normóxia e hipóxia tumoral.

Material e métodos

A. Cultura de células

Foram utilizadas células imortalizadas de carcinoma epidermóide de língua (SCC-9; ATCC, USA); como grupo de comparação utilizou-se queratinócitos humanos imortalizados (Hacat; ATCC, USA) cultivados em meio de Eagle modificado por Dulbecco (DMEM F12/DMEM; Lifetechnologies, USA), acrescido de 1% de antibiótico e 10% de soro bovino fetal (Lifetechnologies, USA), mantidas em incubadora umidificada a 37°C e 5 % de CO₂.

B. Tratamento com Metformina

As células foram tratadas com 20µM/ml por 24h MET (Sigma ®) e 50mM cloreto de cobalto (CoCl₂). O CoCl₂ mimetiza a condição de hipóxia tumoral. Foi realizada uma curva dose-reposta para verificar a concentração e tempo de tratamento ideal com o MET.

Os grupos foram categorizados em: Grupo de comparação (células sem tratamento); Grupo Tratado com MET, células tratadas com a concentração definida de 20µM/ml de MET; Grupo Tratado com CoCl₂, células tratadas com 50mM CoCl₂ e por último o Grupo associação, as células tratadas com ambos 20µM/ml MET e 50mM CoCl₂

C. Ensaio de proliferação celular

No ensaio de proliferação celular foram testadas diferentes concentrações da MET. Os experimentos foram repetidos 2 vezes e realizados em triplicata. As células foram incubadas em estufa apropriada, durante 24, 48 e 72 h. Após o tratamento, as células foram tripsinizadas da placa usando uma solução de tripsina, e a contagem foi realizada em câmara de neubawer. Em cada tempo experimental, foi também calculada a taxa de viabilidade celular.

D. Ensaio de migração celular

O ensaio de migração celular in vitro (modelo wound healing) [6] consiste num método de avaliação semiquantitativo. As células neoplásicas e as células do grupo de comparação foram cultivadas em placas de 12 poços contendo 1mL de meio de cultura, 1% de antibiótico e 10% de soro fetal bovino. Após a cultura se tornar confluente, foi

23 A 26 SETEMBRO DE 2015
Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

realizada uma "ferida" na monocamada de células, com o auxílio de uma ponteira pressionada contra o assoalho da placa de cultura, formando uma fenda na camada de células. Em seguida, a cultura foi lavada três vezes com tampão PBS para a retirada completa de debris celulares. O processo foi fotografado digitalmente em microscópio invertido em aumento de 4X. As imagens fotográficas foram capturadas no início do experimento (tempo de 0 hora) e após a incubação das células a 37°C em atmosfera umedecida com 5% CO2 por 24 horas. A área das fendas foi mensurada nas imagens atribuindo-se 100% no tempo de 0 hora. A média das distâncias totais das áreas das fendas foram calculadas e, em seguida, atribuídos valores percentuais relativos às taxas de migração, em relação ao controle.

E. Análise dos dados

Todos os dados coletados foram digitalizados no programa de estatística SPSS[®], versão 18.0, e posteriormente submetidos a tratamentos estatísticos específicos. Foram feitos os cálculos da média e do erro padrão para cada experimento foi utilizando a análise de variância ANOVE one-way e o teste de Tukey.

Resultados

A. Ensaio de proliferação celular, migração celular e invasão celular

O grupo tratado com a MET foi capaz de inibir a proliferação celular, a migração e a invasão das células SCC9 na concentração de 20µM/ml quando comparados com o grupo controle. Este resultado foi avaliado no tempo de 24 hrs (Figura 1; Figura 2a-b). Esta inibição ocorreu independente das condições de hipóxia ou normóxia.

Discussão

Estudos demonstram que a MET possa auxiliar no tratamento desta doença por exercer um efeito de proteção contra o desenvolvimento de vários tipos de câncer, e também por estar associada a uma melhora do prognóstico [7, 8]. Os resultados obtidos neste trabalho corroboram com muitos outros trabalhos que utilizam outras linhagens celulares, mostrando que mesmo em outras linhagens ocorre uma diminuição da proliferação, migração e invasão celular [9].

Conclusão

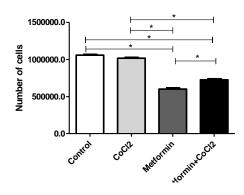
Ainda há um número limitado de estudos que avaliam a MET no carcinoma epidermóide na região de cabeça e pescoço, sendo necessários estudos posteriores que possam aprofundar os conhecimentos sobre o efeito antitumoral desse composto, principalmente no que diz respeito às vias de sinalização que possam levar à modulação de mediadores inflamatórios. Neste estudo foi demonstrado que a MET é capaz de alterar o comportamento fenotípico das SCC9, resultando em uma redução da proliferação e migração celular.

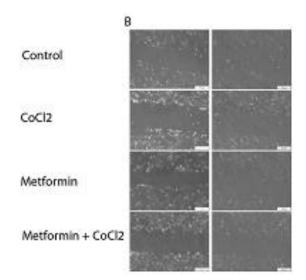
Referências

- [1] Chan GG, Tai BC, Liang S, Lim DT, Soo KC. Squamous cell carcinoma of the head and neck (HNSCC)—multi-modality treatment and impact on survival. Asian journal of surgery / Asian Surgical Association. 2002 Jan;25(1):35-40.
- [2] Curado MP, Hashibe M. Recent changes in the epidemiology of head and neck cancer. Current opinion in oncology. 2009 May;21(3):194-200.
- [3] Jeremic B, Milicic B. Pretreatment prognostic factors influencing distant metastasis-free survival in locally advanced squamous cell carcinoma of the head and neck treated with radiation therapy with or without concurrent chemotherapy. American journal of clinical oncology. 2009 Oct;32(5):483-7.
- [4] Radziuk J, Bailey CJ, Wiernsperger NF, Yudkin JS. Metformin and its liver targets in the treatment of type 2 diabetes. Current drug targets Immune, endocrine and metabolic disorders. 2003 Jun;3(2):151-69. PubMed PMID: 12769787
- [5] Duncan BB, Schmidt MI. Metformin, cancer, alphabet soup, and the role of epidemiology in etiologic research. **Diabetes care**. 2009 Sep;32(9):1748-50. PubMed PMID: 19717820. Pubmed Central PMCID: 2732134.
- [6] Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. **BMC biotechnology**. 2004 Sep 9;4:21.
- [7] Jiralerspong S, Gonzalez-Angulo AM, Hung MC. Expanding the arsenal: metformin for the treatment of triple-negative breast cancer? **Cell cycle**. 2009 Sep 1;8(17):2681. PubMed PMID: 19717981.
- [8] Vitale-Cross L, Molinolo AA, Martin D, Younis RH, Maruyama T, Patel V, et al. Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer prevention research. 2012 Apr;5(4):562-73. PubMed PMID: 22467081. Pubmed Central PMCID: 3429367.
- [9] Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. **Bmj**. 2005 Jun 4;330(7503):1304-5. PubMed PMID: 15849206. Pubmed Central PMCID: 558205.

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO


TRABALHOS CIENTÍFICOS APRESENTAÇÕES ARTÍSTICAS E CULTURAIS DEBATES MINICURSOS E PALESTRAS



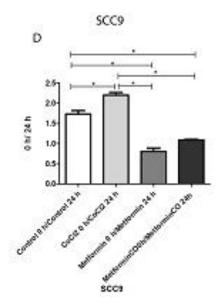


Figura 1: Ensaio de proliferação celular realizado nas células SCC9 tratadas e não tratadas. Grupo 1 controle, Grupo 2 tratado com CoCl2, Grupo 3 tratado com MET, Grupo 4 tratado com MET e CoCl2

Figura 2: **a.** Ensaio de migração entre células antes do tratamento e após 24 hrs de tratamento; **b.** Razão Antes e depois .